449 research outputs found

    Empirical Assessment of Breast Lesion Detection Capability Through an Innovative Microwave Imaging Device

    Get PDF
    This paper investigates the effect of conductivity weighting on microwave images obtained through a dedicated imaging device. MammoWave is a microwave imaging device for detection of breast lesions, operating using only two azimuthally rotating antennas without the use of matching liquids. For each breast, a set of conductivity weighted images are generated through modifying our algorithm based on Huygens principle, producing intensity maps representing the homogeneity of tissues’ dielectric properties. Subsequently, we introduce several imaging parameters (i.e. features) to quantify the non-homogenous behaviour of the image. Through empirical investigation on 103 breasts, we can verify that a selection of these features could allow distinction between breasts with radiological findings (WF), i.e. with benign or malign lesions, and breasts with no radiological findings (NF). Statistical significance was set at p<0.05.We obtained single features Area Under the receiver operating characteristic Curves (AUCs) spanning from 0.65 to 0.68. Significantly, we achieve AUCs of up to 0.77 when considering dense breasts only, which tend to cause detection limitations in mammography exams

    A Microwave Imaging Procedure for Lung Lesion Detection: Preliminary Results on Multilayer Phantoms

    Get PDF
    In this work, a feasibility study for lung lesion detection through microwave imaging based on Huygens’ principle (HP) has been performed using multilayer oval shaped phantoms mimicking human torso having a cylindrically shaped inclusion simulating lung lesion. First, validation of the proposed imaging method has been performed through phantom experiments using a dedicated realistic human torso model inside an anechoic chamber, employing a frequency range of 1–5 GHz. Subsequently, the miniaturized torso phantom validation (using both single and double inclusion scenarios) has been accomplished using a microwave imaging (MWI) device, which operates in free space using two antennas in multi-bistatic configuration. The identification of the target’s presence in the lung layer has been achieved on the obtained images after applying both of the following artifact removal procedures: (i) the “rotation subtraction” method using two adjacent transmitting antenna positions, and (ii) the “ideal” artifact removal procedure utilizing the difference between received signals from unhealthy and healthy scenarios. In addition, a quantitative analysis of the obtained images was executed based on the definition of signal to clutter ratio (SCR). The obtained results verify that HP can be utilized successfully to discover the presence and location of the inclusion in the lung-mimicking phantom, achieving an SCR of 9.88 dB

    A novel motion-model-free UWB short-range positioning method

    Get PDF
    In recent years, the number of location-based services is increasing and consequently, the researchers’ attentions are captivated in designing accurate real-time positioning systems. Despite having a good performance in outdoor environment, Global Positioning System (GPS) is not capable of estimating an object’s position in an indoor environment precisely. In this paper, we present a novel tracking algorithm for indoor environment with a known floor plan. The object location is estimated by utilizing the information of the multipath components which are created by one physical and some virtual anchors. We will link this information to the floor plan by defining a channel model that has a combination of stochastic and deterministic traits. As we have used only one physical anchor in this paper, we would encounter several challenges such as lack of data association and existence of clutters amid real data. We dealt with these problems through random finite set methodology. Additionally, we will demonstrate that the proposed method is not restricted by the model of motion and is capable to precisely track the trajectory. It will be shown that it provides a better accuracy, particularly in non-linear trajectories, compared with two other relevant models which are adopting linear motion model

    Huygens principle based UWB microwave imaging method for skin cancer detection

    Get PDF
    In recent years, Ultra Wideband (UWB) technology has emerged as a promising alternative for use in a wide range of applications. One of the potential applications of UWB is in healthcare and imaging, motivated by its non-ionizing signals, low cost, low complexity, and its ability to penetrate through mediums. Moreover, the large bandwidth covered by UWB signals permits the very high resolution required in imaging experiments. In this paper, a recently introduced UWB microwave imaging technique based on the Huygens principle (HP), has been applied to multilayered skin model with an inclusion representing a tumor. The methodology of HP permits the capture of contrast such that different material properties within the region of interest can be discriminated in the final image, and its simplicity removes the need to solve inverse problems when forward propagating the waves. Therefore the procedure can identify and localize significant scatterers inside a multilayered volume. Validation of the technique through simulations on multilayered cylindrical model of the skin with inclusion representing the tumor has been performed

    Occupancy Based Household Energy Disaggregation using Ultra Wideband Radar and Electrical Signature Profiles

    Get PDF
    Human behaviour and occupancy accounts for a substantial proportion of variation in the energy efficiency pro le of domestic buildings. Yet while people often claim that they would like to reduce their energy bills, rhetoric frequently fails to match action due to the effort involved in understand- ing and changing deeply engrained energy consumption habits. Here, we present and, through dedicated experiments, test in-house developed soft-ware to remotely identify appliance energy usage within buildings, using energy equipment which could be placed at the electricity meter location. Furthermore, we monitor and compare the occupancy of the location under study through Ultra-Wideband (UWB) radar technology and compare the resulting data with those received from the power monitoring software, via time synchronization. These signals when mapped together can potentially provide both occupancy and speci c appliances power consumption, which could enable energy usage segregation on a yet impossible scale as well as usage attributable to occupancy behaviour. Such knowledge forms the basis for the implementation of automated energy saving actions based on a households unique energy profi le

    Free space operating microwave imaging device for bone lesion detection: a phantom investigation

    Get PDF
    In this letter, a phantom validation of a low complexity microwave imaging device operating in free space in the 1-6.5 GHz frequency band is presented. The device, initially constructed for breast cancer detection, measures the scattered signals in a multi-bistatic fashion and employs an imaging procedure based on Huygens principle. Detection has been achieved in both bone fracture lesion and bone marrow lesion scenarios using the superimposition of five doublet transmitting positions, after applying the rotation subtraction artefact removal method. A resolution of 5 mm and a signal to clutter ratio (3.35 in linear scale) are achieved confirming the advantage of employing multiple transmitting positions on increased detection capability

    Developing Artefact Removal Algorithms to Process Data from a Microwave Imaging Device for Haemorrhagic Stroke Detection

    Get PDF
    In this paper, we present an investigation of different artefact removal methods for ultra-wideband Microwave Imaging (MWI) to evaluate and quantify current methods in a real environment through measurements using an MWI device. The MWI device measures the scattered signals in a multi-bistatic fashion and employs an imaging procedure based on Huygens principle. A simple two-layered phantom mimicking human head tissue is realised, applying a cylindrically shaped inclusion to emulate brain haemorrhage. Detection has been successfully achieved using the superimposition of five transmitter triplet positions, after applying different artefact removal methods, with the inclusion positioned at 0°, 90°, 180°, and 270°. The different artifact removal methods have been proposed for comparison to improve the stroke detection process. To provide a valid comparison between these methods, image quantification metrics are presented. An “ideal/reference” image is used to compare the artefact removal methods. Moreover, the quantification of artefact removal procedures through measurements using MWI device is performed

    Dataset related to "A multicentric, single arm, prospective, stratified clinical investigation to evaluate MammoWave’s ability in breast lesions detection"

    Get PDF
    Microwave imaging is a safe and promising new technology in breast radiology, avoiding discomfort of breast compression and usage of ionizing radiation. This dataset relates to a paper which presents the first prospective microwave breast imaging study during which both symptomatic and asymptomatic subjects were recruited. Specifically, a prospective multicentre international clinical trial was performed in 2020-2021, to investigate the capability of a microwave imaging device (MammoWave) in allowing distinction between breasts with no radiological finding (NF) and breasts with radiological findings (WF), i.e., with benign or malignant lesions. Each breast scan was performed with the volunteers lying on a dedicated examination table in a comfortable prone position. MammoWave output was compared to reference standard (i.e., radiologic study obtained within the last month and integrated with histological one if available and deemed necessary by responsible investigator) to classify breasts into NF/WF categories. MammoWave output consists of a selection of microwave images’ features (determined prior to trials’ start), which allow distinction between NF and WF breasts (using statistical significance p<0.05). 353 women were enrolled in the study (mean age 51 years ± 12 [SD], minimum age 19, maximum age 78); MammoWave data from the first 15 women of each site, all with NF breasts, were used for calibration. Following central assessor evaluation, 111 NF (48 dense) and 272 WF (136 dense) breasts were used for comparison with MammoWave output. 272 WF comprised 182 benign findings and 90 malignant histology-confirmed cancer. A sensitivity of 82.3% was achieved (95%CI: 0.78-0.87); sensitivity is maintained when limiting the investigation to histology-confirmed breasts cancer only (90 histology-confirmed breasts cancer have been included in this analysis, having sizes ranging from 3 mm to 60 mm). Specificity value of approximately 50% was achieved as expected, since thresholds were calculated (for each feature) using median value obtained after recruiting the first 15 women (of each site), all NF. This prospective trial may represent another step for introducing microwave imaging into clinical practice, for helping in breast lesion identification in asymptomatic women

    A multicentric, single arm, prospective, stratified clinical investigation to evaluate MammoWave’s ability in breast lesions detection

    Get PDF
    Microwave imaging is a safe and promising new technology in breast radiology, avoiding discomfort of breast compression and usage of ionizing radiation. This paper presents the first prospective microwave breast imaging study during which both symptomatic and asymptomatic subjects were recruited. Specifically, a prospective multicentre international clinical trial was performed in 2020-2021, to investigate the capability of a microwave imaging device (MammoWave) in allowing distinction between breasts with no radiological finding (NF) and breasts with radiological findings (WF), i.e., with benign or malignant lesions. Each breast scan was performed with the volunteers lying on a dedicated examination table in a comfortable prone position. MammoWave output was compared to reference standard (i.e., radiologic study obtained within the last month and integrated with histological one if available and deemed necessary by responsible investigator) to classify breasts into NF/WF categories. MammoWave output consists of a selection of microwave images’ features (determined prior to trials’ start), which allow distinction between NF and WF breasts (using statistical significance p<0.05). 353 women were enrolled in the study (mean age 51 years ± 12 [SD], minimum age 19, maximum age 78); MammoWave data from the first 15 women of each site, all with NF breasts, were used for calibration. Following central assessor evaluation, 111 NF (48 dense) and 272 WF (136 dense) breasts were used for comparison with MammoWave output. 272 WF comprised 182 benign findings and 90 malignant histology-confirmed cancer. A sensitivity of 82.3% was achieved (95%CI: 0.78-0.87); sensitivity is maintained when limiting the investigation to histology-confirmed breasts cancer only (90 histology-confirmed breasts cancer have been included in this analysis, having sizes ranging from 3 mm to 60 mm). Specificity value of approximately 50% was achieved as expected, since thresholds were calculated (for each feature) using median value obtained after recruiting the first 15 women (of each site), all NF. This prospective trial may represent another step for introducing microwave imaging into clinical practice, for helping in breast lesion identification in asymptomatic women
    • …
    corecore